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Abstract

The nonlinear indicial response method is used to

model the unsteady aerodynamic coefficients in the low

speed longitudinal oscillatory wind tunnel test data of
the 0.1 scale model of the F-16XL aircraft. Exponential

functions are used to approximate the deficiency func-

tion in the indicial response. Using one set of oscilla-

tory wind tunnel data and parameter identification

method, the unknown parameters in the exponential

functions are estimated. The genetic algorithm is used

as a least square minimizing algorithm. The assumed

model structures and parameter estimates are validated

by comparing the predictions with other sets of avail-

able oscillatory wind tunnel test data.
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Deficiency functions in Model I and II

Cost function as defined in Eq. (23)

0_
Reduced frequency, --

2V

Mach number

Pitch rate, rad/sec

Time, sec

Period of oscillation, sec

Velocity, m/sec

Distance to moment reference point (in

terms of mac) from nose, m

Distance to center of the planform area

(in terms of mac) from nose, m

Angle of attack, deg



o) Frequencyofoscillatorymotionin
pitch,rad/sec

Dummyvariablefortime

Acronym

GA Genetic Algorithm

Introduction

With the advent of innovative high alpha control

devices such as three-axes thrust vectoring and fore-

body vortex controllers, it has become increasingly

attractive for fighter aircraft to exploit the full potential

offered by flight at high angles of attack (at or beyond

stall) to achieve air superiority in close-air combat.

Since aircraft development programs tend to rely heav-

ily on simulations to reduce the risk and cost of flight

test programs, accurate modeling of such motions as-

sumes critical importance? The traditional aerodynamic

approach based on time invariant stability and control

derivatives proves to be inadequate for predicting such
aircraft motions because it does not account for un-

steady aerodynamic effects that are significant at such

flight conditions. The problem of modeling unsteady

aerodynamic effects at high angles of attack is a formi-
dable task because the flow field is characterized by

extensive flow separations, vortices, vortex interactions

and possible vortex bursts over the wing and tail sur-

faces. In view of this, generalized unsteady aerody-
namic models that are suitable for high angles of attack

flight simulation are not yet available.

NASA Langley Research Center has conducted

low speed static and forced oscillation tests on the 0.I
scalc model of the F-16XL aircraft at high angles of

attack in the Langley 12-Foot Low Speed Wind Tunnel.

Using these experimental data and the indicial response
method, 2"a an attempt has been made in this paper to

develop aerodynamic models suitable for predicting

unsteady aerodynamic coefficients in the longitudinal

forced oscillatory motion of the F-16XL aircraft model

at high angles of attack.

The indicial response method provides a funda-

mental approach to the problem of modeling unsteady

aerodynamic effects. One significant advantage of this

approach is that when the indicial response to a par-
ticular forcing mode is known, e.g., due to angle of

attack, the cumulative response to an arbitrary forcing

mode can be obtained using the superposition principle

in the form of Duhamel integral. By definition, an indi-

cial function is the response to a change in the surface

boundary condition, say angle of attack, that is applied

instantaneously and held constant thereafter. The indi-

cial response is a mathematical concept and as such is

difficult to determine by an experiment. In general, the

indicial response can be assumed to consist of two dis-

tinct components, the noncirculatory loading and the

circulatory loading. The noncirculatory loading arises

due to the sudden change in the surface boundary con-

dition such as a sudden change in the angle of attack. It

assumes a large peak value (theoretically infinity in

incompressible flow) initially but subsequently decays

rapidly. At present, results based on the linear piston

theory are used to define the initial value of the noncir-

culatory loading. For two-dimensional airfoils in in-
compressible flow, Lomax 4 has presented analytical

expressions for the early part of the decay of the
noncirculatory loading. For arbitrary configurations,

such information is not available. The circulatory load-

ing is initially zero and builds up gradually to its final

steady state value that can be obtained in a relatively
easier fashion either by CFD methods or static wind

tunnel tests. The difficulty lies in modeling thc decay of

noncirculatory loading and the build up of the circula-

tory loading. Approximating the decay of the noncir-

culatory loading and the build up of circulatory loading

with exponential functions and using linear indicial

response method, Beddoes, _ and, Leishman _ have ob-

tained satisfactory results for the oscillatory motion of

two-dimensional airfoils at low angles of attack in sub-

sonic flow. In the linear indicial response method, the

indicial response is independent of angle of attack. In

other words, if we know the indiciat response at one

angle of attack, the same is applicable for all other an-

gles of attack as long as aerodynamic coefficients are

linear with angle of attack.

In this paper, the nonlinear indicial response
method developed by Tobak 23 has been used to analyze

the low speed, longitudinal oscillatory wind tunnel data

of the F-16XL aircraft model at high angles of attack.
The linear indicial method is not suitable for high an-

gles of attack because, in general, the aerodynamic co-

efficients vary nonlinearly with angle of attack. In the
nonlinear indicial response method, the indicial re-

sponse depends on angle of attack. In Tobak's 2'3 for-

mulation, the time varying part of the indicial response

is represented by the "deficiency" function. Thus, the

task now becomes one of modeling the time history of

the deficiency function. In this paper, exponential func-

tions are used to approximate the time history of defi-

ciency function. First, we use a model with two term

exponential functions, one to approximate the decay of

noncirculatory part and the other to approximate the

decay of circulatory part. This two term exponential
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representationiscalledmodelI andis physically con-

sistent because it explicitly models the decay of both

noncirculatory and circulatory components of the defi-

ciency function. According to Tobak, 23 the initial mag-

nitudes of the noncirculatory and circulatory compo-

nents are fixed by the theory. Therefore, the task is to

model the decay of noncirculatory and circulatory com-

ponents of the decay function.

Secondly, we use one term exponential function to

approximate the complete deficiency function as pro-

posed by Klein 7xv et al which is called Model II in this

study. This one term model has a simple structure and

is computationally efficient because it can bc expressed

in the form of an ordinary differential equation as op-

posed to the convolution integral form of Model I. By

comparing the predictions of Model II with those of

Model I, it is proposed to evaluate the validity of Model

II for predicting the longitudinal oscillatory unsteady

aerodynamic coefficients of the F-16XL aircraft model

at high angles of attack.

In this paper, parameter identification is used to

determine the unknown parameters in the exponential
functions of Model I and Model II. Some adjustments

have been introduced in Model I to account for uncer-

tainties in the use of the static wind tunnel data that is

needed in Model I and to account for deviations from

linear piston theory due to nonlinearities at high angles

of attack. Only one set of longitudinal oscillatory test

data is used for parameter estimation purposes. The

other sets of available oscillatory test data are used to

validate the parameter estimates. The genetic algorithm

is used to minimize the sum of squares of error between
the estimated and measured time histories of lift or

pitching moment coefficients.

Analysis

Consider the problem of estimation of unsteady lift

and pitching moment coefficients. According to the
nonlinear indiciai function formulation of Tobak, -'_ the

time varying lift and picthing moment coefficients

during oscillatory motion in pitch, for first order accu-

racy in frequency, can be expressed (in Tobak's 2"3nota-

tion) as

(¢)Q(t) = CL(c_,O¢(t), q = O) + Ctq

!

-5 _ (t - x;Cz('t),q = O)(_('Odx
(I

(1)

qF
C,.(t) = C,,,(_, _(t ),q = O)+ [-_-)C,,,q

-j _(t- z,"o_(_), q = O)(x(z)dz
o

(2)

do(
where oc =--. In this formulation, the terms like

dt

and c_q are ignored since they will be of second order

in frequency. The first term on the right hand sidc of

Eqs (1) is the lift coefficient in steady flow conditions

(t --+ oo) and at an angle of attack equal to o¢(t) and zero

pitch rate. Similarly, the first term on the right hand

side of Eq.(2) is the pitching moment coefficient undcr

the steady flow conditions. Both these coefficients can
be obtained either from static wind tunnel tests or CFD

methods. The second terms on the right hand sides of

Eq. (!) and (2) contain the familiar damping in pitch

derivatives. Usually, the isolated value of Cm or C,,q is
not known because the small amplitude forced oscilla-

tion wind tunnel tests that are normally used to obtain

pitch damping derivatives give the combined value of

(Chr +CL_ ) or (C,,,q+ C,,_). In such tests with q = oc, it

is not possible isolate values of CLq or Co,q. In view of

this, both Ct.q and C,,,j are assumed unknown. The third
terms on the right hand sides of Eq.(I) and (2) with

convolution integrals represent the unsteady lift and

pitching moment coefficient respectively and contain
the unknown deficiency functions F2 and F 3 which de-

pend on angle of attack and the elapsed time t - z. Ac-

cording to Tobak, 2_

(_, t) = C_ (c¢t = _)- CL. (c¢ t) (3)

F3(oc. t) = C.,_(oc, t = ,.o) - C.,.(o., t) (4)

where Ct_(oqt) and C,,,_(oc,t) are the nonlinear, time de-

pendent indicial responses, and CL_(_,t = oo) and

C,,_(_,t = oo) arc their steady state values. Therefore, as

(t --4 _), F2(oc,t) = F3(o_,t) = 0.

Let

y|(t) = C L (t)-C L (oo,_(t),O)-(q-_lCL, t
(5)

y_(t) = C.,(t)--Cm(°°,C_(t),O)-- T C.,,,
(6)

so that

!

y, (t) = -_ F2(t - _;oc('t), q = O)6c(z)dz
0

(7)
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-iy2(t) = _(t-x;c_(_),q=O)&(z)d_ (8)

We observe that y_(t) and y2(t) denote the unsteady

components of time varying lift and pitching moment

coefficient respectively.

Model I

We assume that deficiency functions F:((x,t) and

F3(ct,t) consist of two term exponential functions as

given by

F,(_,t)=C (oOe -_v_' I--_). La ) -- e-t_(ct)t (9)

_(o_, t) = - . . -t,,i_,(-me ttOOe "

w,,>,,
_ MJ "4 "'y"

(10)

Here, CL,_(ct),@'_)andC,,,,(a),(-_](.¥,._j-Y,.g)

are the terms fixed by the theory, 2'3 bt(cx), b,'(cx), b:(o0

and b./gx) are unknown indicial parameters which are

assumed to be functions of angle attack, 2,_j is the dis-

tance (in terms of mean aerodynamic chord, mac) from
the nose to the moment reference point, and _ is the

distance (in terms of mac) from the nose to the center of

the planform area of the vehicle. The determination of

all unknown parameters will be discussed later. The

first term on the right hand side of Eqs. (9) or (10) ap-

proximates the decay of circulatory component. To
evaluate this term, we need to know the "theoretically"

correct value of static lift-curve-slope, C_(cx) or the

pitching-moment-cu_'e slope C,,,_(o0. However, to ac-

count for uncertainties in determining a "theoretically"

correct value of Cry(a) or C,,,,_(e0 using static wind tun-

nel tests, we introduce a multiplier at*(¢x). This un-

known parameter is assumed to be a function of angle

of attack (with suitable upper and lower bounds). The

second term in Eq. (9) approximates the decay of

noncirculatory component with an initial value equal to

{4). This initial value is based on the linear piston

theory and is supposed to be independent of planform

shape of the body. The noncirculatory component is

assumed to be uniformly distributed over the entire

planform surface of the body so that the resultant force

acts at the center of the planform area giving a moment

arm ( ._,j - .7,) as used in Eq.(10). However, as noted

by Tobak, _n this result is applicable mainly for flat plate

like surfaces at zero angle of attack. Therefore, for ap-

plication to complex aircraft configurations such as F-

16XL operating at high angles of attack, it is necessary
to derive a suitable initial value for thc nonciculatory

component. This, however was not attempted in this

study. Instead, to account for the deviations from linear
piston theory, an unknown empirical multiplier a:*(cx) is

introduced in the second term. With these assumptions,

= aj (oOCta(oQe_(oqt) * -r_,_

-a2*(OO(4)e -'q'_''

(11)

F,(oc, t) * -_,2_,,_,= a_ (cx)C,,,_(cx)e

(12)

Substituting in Eqs. (7) and (8), wc obtain,

_[!a,'(off'O)C_(_(_))e-'_(_(_))°-_'6_(_)d'c]

k \MJ, " J

(13)

y; (t) = -

_ .4(.-/' 2,a) a2.(ot(_))e_t4,_,_,,(,__)(x(_)d z

(14)

Note that when the "theoretically correct" value of

Ca(fx) and C,,,(ct) are known, a_*(ct) = 1, and for flat

plate like surface operating at low angles of attack,

a:*(o0 = I.

The rotary derivatives are assumed as follows: _

C_q = q, o_< 20 deg (I 5)

(cx-20"]+c (CX-20]"
C_, c, +c2_" 57.3 ) _ 57.3 )

20 deg < o_<_70 deg

(16)

-\57.3J \57.3)

0 _<o_< 70 deg

(17)

where c_, c2, c3, d_, d 2, and d 3 are unknown constants.
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ModelII

We approximate the complete deficiency function

by a single exponential term vs'9 as follows:

G(cc,t) = a(cz)eh'' (I 8)

where F,_(cc,t) denotes the deficiency function for the

unsteady lift or pitching moment coefficient. With this

assumption, the unsteady lift or pitching moment coef-

ficient is given by

t

y(t) = -J a(ec('O)e-""-"6(z)d'c (I9)
{I

Here, a(o0 is an unknown parameter that is a function

of angle of attack and b_ is an unknown constant. Note

that the parameters a(cz) and b_ will have different val-

ues for lift and pitching moment deficiency functions.

The time derivative ofy(t) is given by

+(t)=-d[!a(_('O)e-_t'-+_("c)dx I
(20)

=-[! (-b_)a(R(_))e-t"¢'-'_&(z)dI+a(offt))(x(t)]

or,

S,(t) = -bo,(t ) - a(offt))&(t) (21)

Thus, Eq. (21) is an equivalent ordinary differential

equation for the convolution integral form (Eq.(19)) of

the unsteady lift coefficient y(t). Given the initial value

y(0), this differential equation is much more convenient
to solve compared to the evaluation of the convolution

integral in Eq.(19).

If we assume b_ to be a function of angle of attack,

the convolution integral for y(t) which still has the ordi-

nary differential equation of the form given in Eq.(21)

is given by the following expression: *

y(t) = -_ a({x('c))e _ 6_(z)dz (22)
0

We note that the convolution integral in Eq.(22) is more

complex than the convolution integral in Eq.(14) but we
need not evaluate it. Instead, we can evaluate y(t) more

easily by solving the ordinary differential equation as

given in Eq. (21) with b_ replaced by b_(ot). In this
study, the functional forms for these two parameters are

not prescribed a priori. Instead, such functional forms

are determined during the estimation process.

The model structures for C;,_ and C,,,,t as given in

Eqs. (15) to (I 7) for Model I were also used for Model II.

Determination of Unknown Parameters

In this study, one set of experimental data was used

to estimate the unknown parameters in Model I and

Model II and other sets of available experimental data

were used to assess the quality of predictions made us-

ing the estimated parameters. The genetic algorithm

(GA) was used as a parameter identification algorithm

because GA provides a convenient environment to es-
timate the unknown parameters when their functional

dependence (model structure) is not known a priori. A

brief description of the GA is given in the following:

The genetic algorithms are non derivative search

procedures based on models of processes in natural

genetics. At each iteration, the search takes place by

sampling a coding parameter set from a random distri-

bution, and applying the parameter iterates to a popula-
tion of function evaluations. The performance of the

population elements is used to modify the probability

distribution for sampling in the next iteration. Algo-
rithms of this class are known to be very robust and not

particularly vulnerable to termination at local minima.
More information on GA may be obtained in Refs 11

and 12.

The procedure used to determine the unknown pa-
rameters is as follows: First, subdivide the angle of at-

tack range of interest into a convenient number of seg-

ments or nodes, say n, and use a linear interpolation to

determine the parameter value in between the nodal

points. In GA environment, the sub intervals need not

be equal. The next step is to specify suitable values for
upper and lower limits at each nodal point for a_'(_),

a:'(_), bffot), b2(ot), b((a) and b_'(ot), for Model I and

a(ot) and b_(ot) for Model II and upper and lower limits

for other unknown parameters such as c_, c._, c3, d_, d2,

d3 for both models. The GA generates a population

whose elements are assigned randomly generated val-
ues for each of the unknown parameters that lie within

the specified upper and lower limits. Thus, having as-

signed values to all unknown parameters in Model I or
Model II, the time histories of CL(t) or C,,(t) are gener-

ated for each population element. Let the estimated

time history be denoted by C'L(t)or C,,,(t). Then define,

[ ]+J = _ C_(t,)-Co(t,)
i=1

(23)
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where,C,, = CL or C,,, and, t_ = 1 .... N correspond to the
values of time at which the oscillatory data on CL(t) or

C,,,(t) is available. The problem is to estimate the nodal

values of the unknown parameters in Model I or Model

II so that the sum of the squares of the error J is mini-
mized. The GA was used as a least square minimization

algorithm with J as the cost function.

In the longitudinal oscillatory tests of the F-16XL

aircraft model, the angle of attack varied from 0 to a

little over 70 dog. To cover this range of angle of at-

tack, we use n = 37 (.Aoc = 2 deg) for Model I and

n = 16 (Ao_ = 5 deg) for Model II. More number of
nodes were used for Model I for better definition of the

parameter variations. Further, we have to specify cer-

tain GA specific parameters such as population size,

probability of crossover and probability of mutation. In

this study, we use population size 30. probability of

crossover 0.95 and probability of mutation 0.01. If the

GA reduces cost as the iterations progress, then the GA
was allowed to continue. Otherwise, the GA was

stopped, the values of lower and upper limits were rede-

fined and the GA was started again. Since the GA has
no defined convergence criterion to end the iteration

process, the GA was stopped when it became evident
that further continuation would not result in any im-

provement in J.

The convolution integral was evaluated using the

trapezoidal rule with a step size of 0.0001 s. The inte-

gration of the ordinary differential equation was done

using a forth order Runge-Kutta method with a fixed

step size of 0.02 s. All the computations were done in
MATLAB.

Results and Discussion:

The above formulation for evaluating unsteady lift

and moment coefficients based on indicial response

method was applied to the analysis of longitudinal os-

cillatory data of the 0.1 scale model of the F-16XL air-

craft obtained in the Langley 12-Foot Low Speed Wind
Tunnel. A three-view sketch of the 0.1 scale model of

the F-16-XL aircraft is presented in Fig. 1. Using this

sketch, the center of the planform area ._,._was found to
be approximately at 1.0090 m. The moment reference

point is located at a distance of 0.9932 m from the nose.

The mean aerodynamic chord (mac) of the 0.1 scale

model of the F-16XL aircraft is equal to 0.753 m. Ad-

ditional information on the test model and test facility

may be found in Refs. 9 and 11.

!i0 

Figure 1. Three-View sketch of the F-16XL aircraft
model.

In the oscillatory tests, the mean angle of attack

was close to 35 deg and the oscillation amplitude was

also about 35 deg so that the angle of attack varied from

0 to a little more than 70 deg during one oscillation.

The test section speed was around 17.5 m/see that cor-

responds to a Mach number of about 0.05. The period

of oscillation Tj, varied from 12 s to 1.33 s so that the
corresponding reduced frequency k was in the range

0.011 to 0.101. For the purpose of parameter estima-

tion, the oscillatory wind tunnel data corresponding to

Tp = 2.38 s (k = 0.056) was used. The rest of the avail-
able oscillatory test data were used for validation of

parameter estimates.

The variation of the lift and pitching moment coef-
ficients from static wind tunnel tests on the F-16XL

aircraft model are presented in Fig. 2. Using numerical

curve fit to these data points, the lift-curve-slope C_

and slope of the pitching-moment-coefficient C,,,awere

Figure 2. Static wind tunnel data of the F-16XL
aircraft model.
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deducedasshowninFig.3.However,thevaluesofCL,,

and C,,,, deduced by two different methods of curve

fitting such as cubic splines and cubic polynomials dif-
fered by as much _+10% for CL,_and about ___15_ for

C,,,_. especially at high angles of attack. In view of this,
we assume 0.9 _<a_*(o_) < 1.1 in Eq. (I I) and 0.85 <_

at*(cx) < 1.15 in Eq. (12). For better definition of these
error bounds, more data points taken at much smaller

intervals are needed. However, such data were not

available for this study.

0.05

0.04

0.03

0.02

C_, Cm_ 0"01

per deg 0

-0.01

-0.02

-O.03

-0,04
-10

• ! i ........... ! ..........._...............

!c i _ i i : i i

i i i *

0 10 20 30 40 50 60 70 80

_,deg

Figure 3. Lift-Curve-Slope and slope of pitching-
moment-coefficient of the F-16XL aircraft model.

The unknown coefficients in Eq. (15) - (17) for CL,_

and Cmq were estimated as follows: Model I:
cj = -0.3844, c2 = 2.3776, ca = --4.5026, dr = -0.3678,

d2 = -0.1616, and da = 2.0361; For Model II:

c_ = -0.4240, cz = 3.3127, ca = -3.3840, dj = -1.2450,

d2 = -0.3806, and da = 1.5557.

The time history of the angle of attack for

T, = 2.38 s (k = 0.056) is shown in Fig. 4. The esti-
mated and measured time histories of lift coefficient are

shown in Fig. 5. A cross plot of Q(t) with _(t) is shown

in Fig. 6. It is observed the estimated time histories

match the measured history fairly well, with Model II

giving better fit to the oscillatory test data. A cross plot

of the corresponding time varying lift coefficient with

time varying angle of attack is shown in Fig. 6. It was

observed that the contribution of rotary derivative C_ is

very small and negligible. On the other hand, the con-

tribution of unsteady term y(t) happens to be signifi-

cant. It is quite possible that if more accurate values of

CL_ were available, Model I may have given better re-
sult. The estimated values of the indicial parameters

Model I and Model II are shown in Fig. 7(a) and 7(b).

For comparison, the lift-curve-slope is included in Fig.

7(b). It is observed that the estimated values of a2"(_)

_,deg

80

70 ,_
60

50

4O

30

20

10 ......

,!

V
0 2 6

Time, sec

10 12

Figure 4. Time history of angle of attack, Tp = 2.38 s.

1.6

1.4

1.2

1.0

CL 0.8

0.6

0.4

0,2

... ©

2 4 6

o Oscillatory WT Data
- - - Model 1
-- Model 11

10 12

Time, sec

Figure 5. Time history of measured and estimated

lift coefficient, Tp = 2.38 s.

1.6

1.4

1.2

1.0

CL 0.8

0.6

0.4

0.2

o Oscillatory W-I- Data
-- - Moclel I
-- Model II

! ! ! _1 * ! !

t 7 :

10 20 30 40 50 60 70 80

et, deg

Figure 6. Comparison of measured and estimated

lift coefficient, Tp = 2.38 s.
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arein therange0.38to 0.46suggeslingthaitheinitial
peakvalueof thenoncirculatoryloadingisonly0.38to
0.46ofthatbasedonlinearpistontheory.

40 _ _ , ! ! ! ,

600, _ _ _ _ _ _ _

4oo .............................................. ....
0 I I i • _ _ l i

a( 09 1 .:, :, i i i_ _i .... i t

0.50
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Figure 7(a) Estimated indicial function parameters
in lift coefficient, Model I.
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Figure 7(b). Estimated indieial function parameters
in lift coefficient, Model II.

Using these parameter estimates as shown in Fig.

7, variations of the noncircular and circular components

as well total loading for Model I (Eq. (l 1)), and total

loading for Model II (Eq.(18)) were calculated for

0 < _ < 70 deg. Some sample results of these variations

are shown in Figs. 8 to 10. As expected, the noncircu-

latory component decays rapidly and the circulatory

component decays gradually. The area under each of
these curves is a measure of their contribution to the

unsteady lift coefficient. The calculated areas are shown

in Fig. 11. To first order in frequency, the area under

the deficiency function is related to the parameter C_

or C,,, as the case may be. Thus, the process of esti-

mating CLu and area under the deficiency function is

equivalent to estimating the combined parameter
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Figure 8. Estimated deficiency function components

in lift coefficient, Tp = 2.38 s, cc = 15 deg
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Figure 9. Estimated deficiency function components

in lift coefficient, Tp = 2.38 s, cc = 30 deg.
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Figure 10. Estimated deficiency function

components in lift coefficient, Tp = 2.38 s, c_ = 50 deg.
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C_ +Cu_ or C,,,_+C,,,_ in small amplitude oscillatory
wind tunnel tests. From Fig. II we observe that the

contribution of noncircular component is always nega-

tive and gradually drops with increase in angle of at-

tack. The sign of the circulatory component follows the

sign of CL(o¢). It is interesting to note that Model II fol-

lows closely the variation of the total loading of Model
I which is the sum of the noncirculatory and circulatory

components. Thus, the Model II with one term expo-

nential function satisfactorily approximates the com-
bined variation of the noncirculatory and circulatory

components of Model I. Further, Model II has sirnple

structure and is computalionally efficient because the

convolution integral in the deficiency function can be

represented in the form of an ordinary differential

equation that can be solved more easily compared to the

evaluation of convolution integrals in Model I. Further,

the availability of ordinary differential equation greatly

facilitates the inclusion of unsteady aerodynamic terms

in flight simulation computer codes.
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Figure 11. Variation of area under estimated

deficiency function components, Tp = 2.38 s.

The estimated time histories of the pitching mo-

ment coefficient Tr = 2.38s (k = 0.0562) are shown in
Fig 12. The corresponding cross plots of the time vary-

ing pitching moment coefficient with time varying an-

gle of attack are shown in Figure 13. The estimated
values of the indicial parameters for Model I and Model

II are shown in Figures 14(a) and 14(b). We observe

that the quality of the fit between the oscillatory pitch-

ing moment coefficient data and the estimates is not as

good as that obtained for the lift coefficient. In this case
also, Model II gives a better fit to the oscillatory data.

Using these parameter estimates, predictions were

made for Tp = 1.33s, 1.72s, 4.0s and 12.0s for which
oscillatory data was obtained. These results are shown
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Figure 12. Time history of measured and estimated

pitching moment coefficient, Tp = 2.38 s.
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Figure 13. Comparison of measured and estimated

pitching moment coefficient, Tp = 2.38 s.
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Figure 14(a). Estimated indicial function parameters

in pitching moment coefficient, Model I.
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Figure 14(b). Estimated indicial function parameters

in pitching moment coefficient, Model II.

in Figs. 15 to 22. It is observed that the predicted time

histories of lift and moment coefficients agree reasona-

bly well with measured oscillatory wind tunnel data,

with better agreement indicated for the lift coefficient.

In all these cases, Model II gives better predictions

compared to Model I. However, differences do exist,

particularly in the pitching moment coefficient. The

quality of predictions of Model I might have been better

if more static wind tunnel data at smaller intervals were

available for better definition of CL,_, C,,,_ and the upper

and lower bounds for the uncertainty parameter a_*(_).

The indicial response method of Tobak 23is sup-

posed to be applicable when the lift-curve-slope is
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Figure 15. Time history of measured and predicted

lift coefficient, Tp = 1.33 s.

positive and the steady stale of the indicial response is

time invariant. However, in the present study, the lift-

curve-slope goes negative beyond 30 deg angle of at-

tack. Further, it is quite possiblc that the flow field over

the F-16XL aircrafl model at high angles of attack is

characterized by extensive flow separations, vortex

interactions and possible vortex bursts over wing and

tail surfaces. Under such flow conditions, the assump-

tion of time invariant steady states may not be strictly

valid and the analysis should include the possible exis-

tence of time-dependent equilibrium states as suggested

by Tobak et al, _ which was not attempted in this study.
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Figure 16. Time history of measured and predicted

lift coefficient, Tp = 1.72 s.
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Figure 17. Time history of measured and predicted

lift coefficient, Tp = 4.0 s.
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Figure 18. Time history of measured and predicted

lift coefficient, Tp = 12.0 s.
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Figure 22. Time history of measured and predicted

pitching moment coefficient, Tp = 12.0 s.

Figure 19. Time history of measured and predicted

pitching moment coefficient, Tp = 1.33 s.
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Figure 20. Time history of measured and predicted

pitching moment coefficient, T, = 1.72 s.

Concluding Remarks

The nonlinear indicial response method provides a

fundamental approach to the problem of modeling un-

steady aerodynamic effects at high angles of attack. In

this study, two models have been used to approximate

the nonlinear indicial response. Model I is based on two

term exponential functions, with one term to represent

the noncirculatory component and the other term to

represent the decay of circulatory componenL Some

adjustments have been introduced to Model I to account
for uncertainties in the static wind tunnel data that is

needed in Model I and for deviations from linear piston

theory due to nonlinearities at high angles of attack.

Model II is based on one exponential function to ap-

proximate the combined variation of noncirculatory and

circulatory components. The unknown indicial pa-
rameters in each of the two models were estimated us-
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ing a genetic algorithm. The genctic algorithm was used

as a least-square minimizing technique.

It is shown that Model II is capable of satisfactorily

approximating the combined variation of the noncircu-

latory and circulatory components of Model I. Further,

Model II is simple in structure and computationally

efficient because it can be expressed in the form of an

ordinary differential equation as opposed to the convo-

lution integrals in Model I. This fact greatly facilitates
the inclusion of unsteady aerodynamic terms in the

flight simulation computer codes.
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